13 resultados para Cytoskeleton

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eradication of HIV-1 with highly active antiretroviral therapy (HAART) is not possible due to the persistence of long-lived, latently infected resting memory CD4+ T cells. We now show that HIV-1 latency can be established in resting CD4+ T cells infected with HIV-1 after exposure to ligands for CCR7 (CCL19), CXCR3 (CXCL9 and CXCL10), and CCR6 (CCL20) but not in unactivated CD4+ T cells. The mechanism did not involve cell activation or significant changes in gene expression, but was associated with rapid dephosphorylation of cofilin and changes in filamentous actin. Incubation with chemokine before infection led to efficient HIV-1 nuclear localization and integration and this was inhibited by the actin stabilizer jasplakinolide. We propose a unique pathway for establishment of latency by direct HIV-1 infection of resting CD4+ T cells during normal chemokine-directed recirculation of CD4+ T cells between blood and tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Efficient insulin action requires spatial and temporal coordination of signaling cascades. The prototypical insulin receptor substrate, IRS-1 plays a central role in insulin signaling. By subcellular fractionation IRS-1 is enriched in a particulate fraction, termed the high speed pellet (HSP), and its redistribution from this fraction is associated with signal attenuation and insulin resistance. Anecdotal evidence suggests the cytoskeleton may underpin the localization of IRS-1 to the HSP. In the present study we have taken a systematic approach to examine whether the cytoskeleton contributes to the subcellular fractionation properties and function of IRS-1. By standard microscopy or immunoprecipitation we were unable to detect evidence to support a specific interaction between IRS-1 and the major cytoskeletal components actin (microfilaments), vimentin (intermediate filaments), and tubulin (microtubules) in 3T3-L1 adipocytes or in CHO.IR.IRS-1 cells. Pharmacological disruption of microfilaments and microtubules, individually or in combination, was without effect on the subcellular distribution of IRS-1 or insulin-stimulated tyrosine phosphorylation in either cell type. Phosphorylation of Akt was modestly reduced (20–35%) in 3T3-L1 adipocytes but not in CHO.IR.IRS-1 cells. In cells lacking intermediate filaments (Vim−/−) IRS-1 expression, distribution and insulin-stimulated phosphorylation appeared normal. Even after depolymerisation of microfilaments and microtubules, insulin-stimulated phosphorylation of IRS-1 and Akt were maintained in Vim−/− cells. Taken together these data indicate that the characteristic subcellular fractionation properties and function of IRS-1 are unlikely to be mediated by cytoskeletal networks and that proximal insulin signaling does not require an intact cytoskeleton.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Creatine monohydrate (CrM) supplementation has been shown to increase fat-free mass and muscle power output possibly via cell swelling. Little is known about the cellular response to CrM. We investigated the effect of short-term CrM supplementation on global and targeted mRNA expression and protein content in human skeletal muscle. In a randomized, placebo-controlled, crossover, double-blind design, 12 young, healthy, nonobese men were supplemented with either a placebo (PL) or CrM (loading phase, 20 g/day x 3 days; maintenance phase, 5 g/day x 7 days) for 10 days. Following a 28-day washout period, subjects were put on the alternate supplementation for 10 days. Muscle biopsies of the vastus lateralis were obtained and were assessed for mRNA expression (cDNA microarrays + real-time PCR) and protein content (Kinetworks KPKS 1.0 Protein Kinase screen). CrM supplementation significantly increased fat-free mass, total body water, and body weight of the participants (P < 0.05). Also, CrM supplementation significantly upregulated (1.3- to 5.0-fold) the mRNA content of genes and protein content of kinases involved in osmosensing and signal transduction, cytoskeleton remodeling, protein and glycogen synthesis regulation, satellite cell proliferation and differentiation, DNA replication and repair, RNA transcription control, and cell survival. We are the first to report this large-scale gene expression in the skeletal muscle with short-term CrM supplementation, a response that suggests changes in cellular osmolarity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is somewhat paradoxical that the malaria parasite’s survival strategy involves spending almost all of its blood-stage existence residing behind a two-membrane barrier in a host red blood cell, yet giving considerable attention to exporting parasite-encoded proteins back across these membranes. These exported proteins are thought to play diverse roles and are crucial in pathogenic processes, such as re-modelling of the erythrocyte cytoskeleton and mediating the export of a major virulence protein known as Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), and in metabolic processes such as nutrient uptake and solute exchange. Despite these varied roles most exported proteins have at least one common link; they share a trafficking pathway that begins with entry into the endoplasmic reticulum and concludes with passage across the vacuole membrane via a proteinaceous translocon known as the Plasmodium translocon of exported proteins (PTEX). In this commentary we review recent advances in our understanding of this export pathway and suggest several models by which different aspects of the process may be interconnected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Axotomized neurons have the innate ability to undergo regenerative sprouting but this is often impeded by the inhibitory central nervous system environment. To gain mechanistic insights into the key molecular determinates that specifically underlie neuronal regeneration at a transcriptomic level, we have undertaken a DNA microarray study on mature cortical neuronal clusters maintained in vitro at 8, 15, 24 and 48 hrs following complete axonal severance. A total of 305 genes, each with a minimum fold change of ±1.5 for at least one out of the four time points and which achieved statistical significance (one-way ANOVA, P < 0.05), were identified by DAVID and classified into 14 different functional clusters according to Gene Ontology. From our data, we conclude that post-injury regenerative sprouting is an intricate process that requires two distinct pathways. Firstly, it involves restructuring of the neurite cytoskeleton, determined by compound actin and microtubule dynamics, protein trafficking and concomitant modulation of both guidance cues and neurotrophic factors. Secondly, it elicits a cell survival response whereby genes are regulated to protect against oxidative stress, inflammation and cellular ion imbalance. Our data reveal that neurons have the capability to fight insults by elevating biological antioxidants, regulating secondary messengers, suppressing apoptotic genes, controlling ion-associated processes and by expressing cell cycle proteins that, in the context of neuronal injury, could potentially have functions outside their normal role in cell division. Overall, vigilant control of cell survival responses against pernicious secondary processes is vital to avoid cell death and ensure successful neurite regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intracellular signaling events are signposts of biological processes, which govern the direction and action of biological activities. Through millions of years of evolution, pathogens, such as viruses, have evolved to hijack host cell machinery to infect their targets and are therefore dependent on host cell signaling for replication. This review will detail our current understanding of the signaling events that are important for the early steps of HIV-1 replication. More specifically, the therapeutic potential of signaling events associated with chemokine coreceptors, virus entry, viral synapses, and post-entry processes will be discussed. We argue that these pathways may represent novel targets for antiviral therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Actin protein is a major component of the cell cytoskeleton, and its ability to respond to external forces and generate propulsive forces through the polymerization of filaments is central to many cellular processes. The mechanisms governing actin's abilities are still not fully understood because of the difficulty in observing these processes at a molecular level. Here, we describe a technique for studying actin–surface interactions by using a surface forces apparatus that is able to directly visualize and quantify the collective forces generated when layers of noninterconnected, end-tethered actin filaments are confined between 2 (mica) surfaces. We also identify a force-response mechanism in which filaments not only stiffen under compression, which increases the bending modulus, but more importantly generates opposing forces that are larger than the compressive force. This elastic stiffening mechanism appears to require the presence of confining surfaces, enabling actin filaments to both sense and respond to compressive forces without additional mediating proteins, providing insight into the potential role compressive forces play in many actin and other motor protein-based phenomena.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Healthy living throughout the lifespan requires continual growth and repair of cardiac, smooth, and skeletal muscle. To effectively maintain these processes muscle cells detect extracellular stress signals and efficiently transmit them to activate appropriate intracellular transcriptional programs. The striated muscle activator of Rho signaling (STARS) protein, also known as Myocyte Stress-1 (MS1) protein and Actin-binding Rho-activating protein (ABRA) is highly enriched in cardiac, skeletal, and smooth muscle. STARS binds actin, co-localizes to the sarcomere and is able to stabilize the actin cytoskeleton. By regulating actin polymerization, STARS also controls an intracellular signaling cascade that stimulates the serum response factor (SRF) transcriptional pathway; a pathway controlling genes involved in muscle cell proliferation, differentiation, and growth. Understanding the activation, transcriptional control and biological roles of STARS in cardiac, smooth, and skeletal muscle, will improve our understanding of physiological and pathophysiological muscle development and function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Forces generated by polymerizing/de-polymerizing actin filaments confined between two mica surfaces were measured using the Surface Forces Apparatus. The measurements show that confined actin filaments exhibit complex force-generation dynamics involving multiple “modes”, the predominance of which is determined by the confinement gap and the applied force (confining pressure).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

T lymphoma invasion and metastasis protein (Tiam1) is up-regulated in variety of cancers and its expression level is related to metastatic potential of the type of cancer. Earlier, Tiam1 was shown to be overexpressed in retinoblastoma (RB) and we hypothesized that it was involved in invasiveness of RB. This was tested by silencing Tiam1 in RB cell lines (Y79 and Weri-Rb1) using siRNA pool, targeting different regions of Tiam1 mRNA. The cDNA microarray of Tiam1 silenced cells showed gene regulations altered by Tiam1 were predominantly on the actin cytoskeleton interacting proteins, apoptotic initiators and tumorogenic potential targets. The silenced phenotype resulted in decreased growth and increased apoptosis with non-invasive characteristics. Transfection of full length and N-terminal truncated construct (C1199) clearly revealed membrane localization of Tiam1 and not in the case of C580 construct. F-actin staining showed the interaction of Tiam1 with actin in the membrane edges that leads to ruffling, and also imparts varying invasive potential to the cell. The results obtained from our study show for the first time that Tiam1 modulates the cell invasion, mediated by actin cytoskeleton remodeling in RB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell membrane changes its morphology during many physiological processes with the assistance of a solid support, such as the cytoskeleton, under an environmental stimulus. Here, a novel type of stimuli-responsive lipogel was fabricated, mimicking the changes of cell membrane. The lipogel was prepared from poly(N-isopropylacrylamide) (pNIPAM) microgel particle and phospholipid by a solvent-exchange method. The temperature dependent volume phase transition of pNIPAM triggers reversible transformation of the lipogel between a lipid vesicle-coated sun-like structure and a contracted hybrid sphere, through lipid merging and protrusion processes, respectively. By contrast, the salt induced pNIPAM phase transition leads to an irreversible vesicle release behaviour. The lipogel creates a unique platform for studying cell membrane behaviour and provides promising candidates in drug delivery and controlled release applications. © 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tuberculosis (TB) is still a major public health issue in developing countries, and its chemotherapy is compromised by poor drug compliance and severe side effects. This study aimed to synthesize and characterize new multimodal PEGylated liposomes encapsulated with clinically commonly used anti-TB drugs with linkage to small interfering RNA (siRNA) against transforming growth factor-β1 (TGF-β1). The novel NP-siRNA liposomes could target THP-1-derived human macrophages that were the host cells of mycobacterium infection. The biological effects of the NP-siRNA liposomes were evaluated on cell cycle distribution, apoptosis, autophagy, and the gene silencing efficiency of TGF-β1 siRNA in human macrophages. We also explored the proteomic responses to the newly synthesized NP-siRNA liposomes using the stable isotope labeling with amino acids in cell culture approach. The results showed that the multifunctional PEGylated liposomes were successfully synthesized and chemically characterized with a mean size of 265.1 nm. The novel NP-siRNA liposomes functionalized with the anti-TB drugs and TGF-β1 siRNA were endocytosed efficiently by human macrophages as visualized by transmission electron microscopy and scanning electron microscopy. Furthermore, the liposomes showed a low cytotoxicity toward human macrophages. There was no significant effect on cell cycle distribution and apoptosis in THP-1-derived macrophages after drug exposure at concentrations ranging from 2.5 to 62.5 μg/mL. Notably, there was a 6.4-fold increase in the autophagy of human macrophages when treated with the NP-siRNA liposomes at 62.5 μg/mL. In addition, the TGF-β1 and nuclear factor-κB expression levels were downregulated by the NP-siRNA liposomes in THP-1-derived macrophages. The Ingenuity Pathway Analysis data showed that there were over 40 signaling pathways involved in the proteomic responses to NP-siRNA liposome exposure in human macrophages, with 160 proteins mapped. The top five canonical signaling pathways were eukaryotic initiation factor 2 signaling, actin cytoskeleton signaling, remodeling of epithelial adherens junctions, epithelial adherens junction signaling, and Rho GDP-dissociation inhibitor signaling pathways. Collectively, the novel synthetic targeting liposomes represent a promising delivery system for anti-TB drugs to human macrophages with good selectivity and minimal cytotoxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The loss of muscle strength and increased injury rate in aging skeletal muscle has previously been attributed to loss of muscle protein (cross-sectional area) and/or decreased neural activation. However, it is becoming clear that force transfer within and between fibers plays a significant role in this process as well. Force transfer involves a secondary matrix of proteins that align and transmit the force produced by the thick and thin filaments along muscle fibers and out to the extracellular matrix. These specialized networks of cytoskeletal proteins aid in passing force through the muscle and also serve to protect individual fibers from injury. This review discusses the cytoskeleton proteins that have been identified as playing a role in muscle force transmission, both longitudinally and laterally, and where possible highlights how disease, aging, and exercise influence the expression and function of these proteins.